Supplemental information for

Flagging Facebook falsehoods: Self-identified humor warnings outperform fact checker and peer warnings

doi: 10.1093/jcmc/zmz012

R. Kelly Garrett¹ and Shannon Poulsen

Ohio State University School of Communication

1 able of Contents	
Appendix S1: Study 1 sample	2
Appendix S2: Study 1 instructions	3
Appendix S3: Study 2 sample	5
Appendix S4: Study 2 instructions	
Table S1. Study 1 random-effects models estimating flag type influence on message perceptions	7
Table S1a. Study 1 message perception models with continuous belief accuracy measures	8
Table S2. Study 1 random-effects models estimating flag influence on flagging system perceptions	9
Table S2a. Study 1 flagging-system perceptions models with continuous belief accuracy measures	10
Table S3. Study 2 random-effects models estimating flag type influence on message perceptions	11
Table S3a. Study 2 message perceptions models, without exclusions	12
Table S4. Study 2 random-effects models estimating flag influence on flagging system perceptions	13
Table S4a. Study 2 flagging system perceptions models, without exclusions	14
Figure S1. Study 1 visual presentation of misinformation and flags	15
Figure S2. Study 2 visual presentation of misinformation and flags	

1. Corresponding author: garrett.258@osu.edu

Appendix S1: Study 1 sample

Exclusion criteria

Recruiting from opt-in online panels allows researchers to access a much more diverse pool of potential participants than would otherwise be possible, but it also has important limitations. A non-trivial number of individuals recruited in this way do not make a good faith effort to participate. They ignore directions, answer questions without reading, enter nonsensical responses, interrupt the study to pursue other interests, etc., all of which can introduce error. For these reasons, we worked to identify and exclude such cases prior to undertaking analyses. We do this using a variety of strategies. Some are obvious: we exclude participants who choose the same response for every item in a scale that includes reverse-coded items. For example, a participant who describes a source as "extremely trustworthy" and "unbiased" but also as "sensational" and "not at all sincere" is very unlikely to be reading questions carefully. Others are more nuanced: although participants are likely to choose neutral (midpoint) responses to some items, if they do so across dozens of questions tapping three or more different concepts, it is unlikely that they are attending carefully to the study. We also exclude participants who spent more than 2 hours on either wave of the study because disruptions of the task make it more difficult for participants to follow relevant instructions. The second wave of the study also included three open-ended questions. We exclude individuals who skipped or provided nonsense answers to these items (e.g., "cool beans dude").

Demographics

Participants were between 19 and 85 years old (M = 49.07, SD = 16.62). The modal level of educational attainment was "some college but no degree" (33.5%), followed closely by those holding an associates or bachelor's degree (31.7%), and those having only completed a high school degree or less (24.3%). Participants were fairly evenly divided by political ideology (34.9% liberal and 33.9% conservative), and party (43.6% Democrats and 29.9% Republican). The sample was disproportionately White (88.5%), and Blacks were underrepresented (7.3%). The largest bias in the sample was associated with gender: almost three-quarters of study participants (73.4%) were women.

Appendix S2: Study 1 instructions

Fact-checker flagging (n = 50)

Facebook is looking for ways to fight the spread of misleading information on its service. The company has developed a new feature intended to help users recognize questionable information that appears on their newsfeeds so that they can make well informed decisions about the information they read and share.

In this study, we are asking for your help testing this new feature.

With the new feature, Facebook users can "flag" articles that contain misleading or inaccurate information. If several users flag the post, it will be sent to a pool of 3rd party fact-checking organizations. Fact checkers will review the claims made in the article, and if at least two organizations conclude the article contains misleading or inaccurate information, the post will be flagged. When a story that has been flagged by fact checkers shows up on your newsfeed, you'll see a warning attached to the post.

Peer flagging (n = 56)

Facebook is looking for ways to fight the spread of misleading information on its service. The company has developed a new feature intended to help users recognize questionable information that appears on their newsfeeds so that they can make well informed decisions about the information they read and share.

In this study, we are asking for your help testing this new feature.

With the new feature, Facebook users can "flag" articles that contain misleading or inaccurate information. When a story that has been flagged by other Facebook users like you shows up on your newsfeed, you'll see a warning attached to the post.

Self-identified humor (n = 53)

Facebook is looking for ways to fight the spread of misleading information on its service. The company has developed a new feature intended to help users recognize questionable information that appears on their newsfeeds so that they can make well informed decisions about the information they read and share.

In this study, we are asking for your help testing this new feature.

With the new feature, Facebook has created a list of websites that describe themselves as providing potentially deceptive information, including satire, parody, hoaxes, etc. When a story hosted on one of these websites shows up on your newsfeed, you'll see a warning attached to the post.

Control (n = 59)

Facebook is looking for ways to fight the spread of misleading information on its service. The company is developing new features intended to help users recognize questionable information that appears on their newsfeeds so that they can make well informed decisions about the information they read and share. In this study, we are asking for your help evaluating current Facebook posts.

Appendix S3: Study 2 sample

Exclusion criteria

Observing the flag was a critical part of this study. The study included instructions describing the importance of the flag, and flagged messages were displayed multiple times. Participants who, despite this, did not recall ever seeing the flag were excluded (n = 99). We also excluded individuals who selected mutually exclusive responses on two separate scales (n = 16). The questionnaire included one open-ended item, and we excluded nonsense responses to this item. (E.g., "He was my first time for you to be a great time for you to be a great time for you to be a great time.", n = 50). One participant skipped every question except an attention check.

To help ensure that the effects observed here are not the product of post-treatment bias (Montgomery, Nyhan, & Torres, 2018) we reran the analyses without exclusions based on flag recall, straightlining, or nonsense answers. The coefficients magnitude and direction were the same in every analysis (see Tables S3a and S4a).

References

Montgomery, J. M., Nyhan, B., & Torres, M. (2018). How Conditioning on Posttreatment Variables Can Ruin Your Experiment and What to Do about It. *American Journal of Political Science*, 62(3), 760-775. doi:10.1111/ajps.12357

Demographics

Participants were between 19 and 90 years old (M = 46.28, SD = 16.28). The modal level of educational attainment was holding an associates or bachelor's degree (38.5%), followed by those having only completed a high school degree or less (25.0%), and "some college but no degree" (22.8%). Participants were fairly evenly divided by political ideology (32.3% liberal and 36.7% conservative) and party (41.0% Democrats and 32.2% Republican). In terms of race, the sample was predominantly White (77.5%), but Blacks (12.1%) and Asians (6.7%) were also included. The sample included comparable numbers of men and women (52.9% female).

Appendix S4: Study 2 instructions

Facebook is looking for ways to fight the spread of misleading information on its service. The company has developed a new feature intended to help users recognize questionable information that appears on their newsfeeds so that they can make well informed decisions about the information they read and share.

In this study, we are asking for your help testing this new feature.

With the new feature, Facebook can "flag" articles that contain misleading or inaccurate information. When a story that has been flagged shows up on your newsfeed, you'll see a warning attached to the post. There will be a red warning symbol followed by a brief message explaining why the message has been flagged. The warning symbol looks like this:

Table S1. Study 1 random-effects models estimating flag type influence on message perceptions

Acceptance of	of falsehood Sharing i		intention	Source c	ource credibility	
Main effect	Interaction	Main effect	Interaction	Main effect	Interaction	
520, .508	431, .726	579, .659	711, .597	427, .466	618, .382	
749, .309	623, .577	374, .902	247, 1.100	480, .440	385, .648	
-1.185,142	861, .341	-1.263,006	-1.115, .223	889, .018	826, .207	
_	1.505, 2.649	_	.296, 1.058	_	.474, 1.356	
_	-1.300, .340	_	348, .751	_	346, .921	
_	-1.513, .144	_	989, .095	_	-1.082, .186	
_	-2.040,392	_	-1.067, .034	_	-1.061, .211	
3.447, 4.164	2.595, 3.396	2.755, 3.620	2.469, 3.378	2.926, 3.549	2.534, 3.227	
.497, 1.392	.543, 1.283	2.090, 3.181	2.099, 3.179	.736, 1.336	.719, 1.272	
1.894, 2.758	1.424, 2.075	.480, .699	.421, .613	.830, 1.209	.714, 1.040	
436	436	436	436	436	436	
218	218	218	218	218	218	
$\bar{\chi}^2(1) = 16.10$	$\bar{\chi}^2(1) = 24.31$	$\bar{\chi}^2(1) = 239.49$	$\bar{\chi}^2(1) = 257.25$	$\bar{\chi}^2(1) = 61.99$	$\bar{\chi}^2(1) = 70.24$	
<i>p</i> <.001	p <.001	<i>p</i> <.001	p <.001	p <.001	p <.001	
	Main effect 520, .508749, .309 -1.185,142 3.447, 4.164 .497, 1.392 1.894, 2.758 436 218 $\bar{\chi}^2(1) = 16.10$	520, .508431, .726749, .309623, .577-1.185,142861, .341—1.505, 2.649—-1.300, .340—-1.513, .144—-2.040,3923.447, 4.1642.595, 3.396.497, 1.392.543, 1.2831.894, 2.7581.424, 2.075436436218218 $\bar{\chi}^2(1) = 16.10$ $\bar{\chi}^2(1) = 24.31$	Main effectInteractionMain effect520, .508431, .726579, .659749, .309623, .577374, .902-1.185,142861, .341-1.263,006—1.505, 2.649——-1.300, .340——-1.513, .144——-2.040,392—3.447, 4.1642.595, 3.3962.755, 3.620.497, 1.392.543, 1.2832.090, 3.1811.894, 2.7581.424, 2.075.480, .699436436436218218218 $\bar{\chi}^2(1) = 16.10$ $\bar{\chi}^2(1) = 24.31$ $\bar{\chi}^2(1) = 239.49$	Main effectInteractionMain effectInteraction520, .508431, .726579, .659711, .597749, .309623, .577374, .902247, 1.100-1.185,142861, .341-1.263,006-1.115, .223—1.505, 2.649—.296, 1.058—-1.300, .340—348, .751—-1.513, .144—989, .095—-2.040,392—-1.067, .0343.447, 4.1642.595, 3.3962.755, 3.6202.469, 3.378.497, 1.392.543, 1.2832.090, 3.1812.099, 3.1791.894, 2.7581.424, 2.075.480, .699.421, .613436436436436218218218218 $\bar{\chi}^2(1) = 16.10$ $\bar{\chi}^2(1) = 24.31$ $\bar{\chi}^2(1) = 239.49$ $\bar{\chi}^2(1) = 257.25$	Main effect Interaction Main effect Interaction Main effect 520, .508 431, .726 579, .659 711, .597 427, .466 749, .309 623, .577 374, .902 247, 1.100 480, .440 -1.185,142 861, .341 -1.263,006 -1.115, .223 889, .018 — 1.505, 2.649 — .296, 1.058 — — -1.300, .340 — 348, .751 — — -1.513, .144 — 989, .095 — — -2.040,392 — -1.067, .034 — 3.447, 4.164 2.595, 3.396 2.755, 3.620 2.469, 3.378 2.926, 3.549 .497, 1.392 .543, 1.283 2.090, 3.181 2.099, 3.179 .736, 1.336 1.894, 2.758 1.424, 2.075 .480, .699 .421, .613 .830, 1.209 436 436 436 436 436 218 218 218 218 $\bar{\chi}^2(1) = 16.10$ $\bar{\chi}^2(1) = 24.31$ $\bar{\chi}^2(1) = 239.4$	

Notes. Cells show 95% Confidence Intervals (CI) for random-effects model (nested by respondent ID). Coefficients with CIs that do not contain zero are in **bold**. a. Reference category is the no flag (control) condition.

Table S1a. Study 1 message perception models with continuous belief accuracy measures

	Acceptance	eptance of falsehood Sharing i		ntention Source		credibility	
	Main effect	Interaction	Main effect	Interaction	Main effect	Interaction	
Peer-generated flag ^a	520, .508	-1.050, .671	579, .659	-1.280, .303	427, .466	1.174, .260	
Fact-checker flag ^a	749, .309	285, 1.356	374, .902	191, 1.370	480, .440	261, 1.115	
Self-identified humor flag ^a	-1.185,142	725, 1.039	-1.263,006	-1.215, .404	889, .018	942, .530	
Issue belief inaccuracy, t-1 b	_	.423, .668	_	.056, .225	_	.155, .350	
Peer X inaccuracy ^b	_	168, .199	_	004, .246	_	043, .248	
Fact-checker X inaccuracy b	_	037,027	_	202, .032	_	255, .020	
Self-ID X inaccuracy ^b	_	425,056	_	193, .061		223, .071	
Constant	3.447, 4.164	1.115, 2.251	2.755, 3.620	2.101, 3.181	2.926, 3.549	1.778, 2.734	
Variance components							
Random intercept	.497, 1.392	.478, 1.126	2.090, 3.181	2.082, 3.150	.736, 1.336	.661, 1.179	
Residual	1.894, 2.758	1.232, 1.798	.480, .699	.404, .589	.830, 1.209	.674,.984	
Number of observations	436	436	436	436	436	436	
Number of participants	218	218	218	218	218	218	
Likelihood ratio test	$\bar{\chi}^2(1) = 16.10$	$\bar{\chi}^2(1) = 24.47$	$\bar{\chi}^2(1) = 239.49$	$\bar{\chi}^2(1) = 260.18$	$\bar{\chi}^2(1) = 61.99$	$\bar{\chi}^2(1) = 67.23$	
	p <.001	<i>p</i> <.001	p <.001	p <.001	p <.001	p <.001	

Notes. Cells show 95% Confidence Intervals (CI) for random-effects model (nested by respondent ID). Coefficients with CIs that do not contain zero are in **bold**. a. Reference category is no flag (control) condition. b. Continuous measure of pre-test belief accuracy

Table S2. Study 1 random-effects models estimating flag influence on flagging system perceptions

	Reac	tance	Value of flagging		
	Main effect	Interaction	Main effect	Interaction	
Peer-generated flag ^a	117, 1.091	493, .797	904, .163	635, .537	
Fact-checker flag ^a	144, 1.098	367, .959	539, .559	336, .868	
Inaccurate issue beliefs, t-1	_	507, .249	_	165, .619	
Peer X inaccurate	_	.263, 1.330	_	-1.302,196	
Fact-checker X inaccurate	_	123, .930	_	-1.112,018	
Constant	2.526, 3.392	2.554, 3.486	4.702, 5.468	4.554, 5.402	
Variance components					
Random intercept	1.831, 2.984	1.822, 2.963	1.349, 2.255	1.357, 2.258	
Residual	.399, .620	.370, .574	.444, .689	.416, .646	
Number of observations	318	318	318	318	
Number of participants	159	159	159	159	
Likelihood ratio test	$\bar{\chi}^2(1) = 181.07$	$\bar{\chi}^2(1) = 187.47$	$\bar{\chi}^2(1) = 136.66$	$\bar{\chi}^2(1) = 143.44$	
	p <.001	p <.001	p <.001	p <.001	

Notes. Cells show 95% Confidence Intervals (CI) for random-effects model (nested by respondent ID). Coefficients with CIs that do not contain zero are in **bold**. a. Reference category is self-identified humor flag.

Table S2a. Study 1 flagging-system perceptions models with continuous belief accuracy measures

	Reac	tance	Value of	flagging
	Main effect	Interaction	Main effect	Interaction
Peer-generated flag ^a	117, 1.091	979, .628	904, .163	596, .954
Fact-checker flag ^a	144, 1.098	572, 1.014	539, .559	457, 1.062
Issue belief inaccuracy, t-1 b	_	092, .091	_	078, .114
Peer X inaccuracy b	_	.034, .289	_	267, .001
Fact-checker X inaccuracy ^b	_	056, .185	_	199, .054
Constant	2.526, 3.392	2.380, 3.540	4.702, 5.468	4.447, 5.567
Variance components				
Random intercept	1.831, 2.984	1.817, 2.956	1.349, 2.255	1.367, 2.275
Residual	.399, .620	.370, .574	.444, .689	.422, .655
Number of observations	318	318	318	318
Number of participants	159	159	159	159
Likelihood ratio test	$\bar{\chi}^2(1) = 181.07$	$\bar{\chi}^2(1) = 185.67$	$\bar{\chi}^2(1) = 136.66$	$\bar{\chi}^2(1) = 142.69$
	<i>p</i> <.001	<i>p</i> <.001	<i>p</i> <.001	p <.001

Notes. Cells show 95% Confidence Intervals (CI) for random-effects model (nested by respondent ID). Coefficients with CIs not do not contain zero are in **bold**. a. Reference category is self-identified humor flag. b. Continuous measure of pre-test belief accuracy

Table S3. Study 2 random-effects models estimating flag type influence on message perceptions

	Acceptance	Acceptance of falsehood Sharing i		intention	Source c	redibility
	Main effect	Interaction	Main effect	Interaction	Main effect	Interaction
Story, self-identified (StorySID) ^a	806,125	878,152	713, .121	756, .110	700,079	692,033
Story, Facebook (StoryFB) ^a	574, .126	608, .139	678, .179	757, .249	302, .336	398, .286
Site, self-identified (SiteSID) ^a	582, .111	563, .170	636, .211	705, .177	506, .125	558, .114
Site, Facebook (SiteFB) ^a	616, .085	570, .164	507, .350	601, .287	472, .167	511, .165
Inaccurate issue beliefs, t-1	_	.802, 1.469	_	.025, .556	_	.109, .574
StorySID X inaccurate	_	085, .895	_	241, .542	_	341, .343
StoryFB X inaccurate	_	383, .611	_	250, .549	_	133, .565
SiteSID X inaccurate	_	471, .493	_	215, .545	_	215, .451
SiteFB X inaccurate	_	446, .536	_	103, .669	_	212, .466
Constant	3.555, 4.033	3.064, 3.577	2.713, 3.297	2.577, 3.190	3.029, 3.465	2.871, 3.339
Variance components						
Random intercept	1.093, 1.560	.858, 1.244	2.354, 3.018	2.245, 2.885	1.231, 1.602	1.180, 1.536
Residual	1.175, 1.471	1.005, 1.260	.487, .609	.470, .590	.403, .505	.382, .479
Number of observations	1,220	1,220	1,220	1,220	1,220	1,220
Number of participants	610	610	610	610	610	610
Likelihood ratio test	$\bar{\chi}^2(1) = 174.10$ $p < .001$	$\bar{\chi}^2(1) = 154.53$ $p < .001$	$\bar{\chi}^2(1) = 713.49$ $p < .001$	$\bar{\chi}^2(1) = 678.74$ $p < .001$	$\bar{\chi}^2(1) = 518.69$ $p < .001$	$\bar{\chi}^2(1) = 516.04$ $p < .001$

Notes. Cells show 95% Confidence Intervals (CI) for random-effects model (nested by respondent ID). Coefficients with CIs that do not contain zero are in **bold**. a. Reference category is no flag (control) condition.

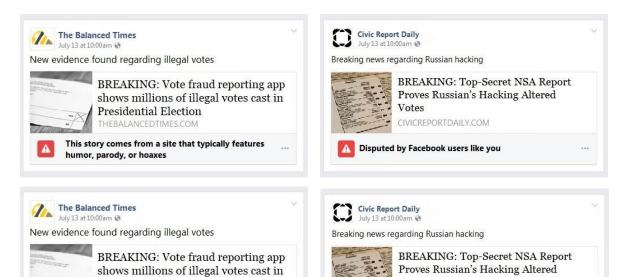
Table S3a. Study 2 message perceptions models, without exclusions

	Acceptance	cceptance of falsehood Sharing in		intention	Source cr	credibility	
	Main effect	Interaction	Main effect	Interaction	Main effect	Interaction	
Story, self-identified (StorySID) ^a	665,008	682, .009	637, .175	687, .154	666,049	652,004	
Story, Facebook (StoryFB) ^a	452, .200	454, .243	557, .251	618, .223	250, .364	352, .298	
Site, self-identified (SiteSID) ^a	539, .110	517, .174	622, .181	682, .152	469, .141	507, .137	
Site, Facebook (SiteFB) ^a	551, .102	553, .136	525, .282	615, .220	419, .194	442, .203	
Inaccurate issue beliefs, t-1	_	.850, 1.486	_	.047, .537	_	.158, .594	
StorySID X inaccurate	_	161, .749	_	178, .527	_	303, .324	
StoryFB X inaccurate	_	382, .518	_	211, .491	_	063, .561	
SiteSID X inaccurate	_	443, .435	_	203, .472	_	215, .387	
SiteFB X inaccurate	_	280, .607	_	086, .593	_	217, .388	
Constant	3.641, 4.110	3.107, 3.612	2.903, 3.483	2.761, 3.367	3.180, 3.465621	3.000, 3.469	
Variance components							
Random intercept	1.248, 1.688	.960, 1.320	2.662, 3.307	2.761, 3.367	1.467, 1.841	1.372, 1.725	
Residual	1.181, 1.441	1.017, 1.243	.461, .562	.447, .546	.392, .479	.373, .456	
Number of observations	1,550	1,550	1,550	1,550	1,550	1,550	
Number of participants	775	775	775	775	775	775	
Likelihood ratio test	$\bar{\chi}^2(1) = 251.74$ $p < .001$	$\bar{\chi}^2(1) = 215.57$ $p < .001$	$\bar{\chi}^2(1) = 1010.47$ $p < .001$	$\bar{\chi}^2(1) = 949.06$ $p < .001$	$\bar{\chi}^2(1) = 762.78$ $p < .001$	$\bar{\chi}^2(1) = 730.57$ $p < .001$	

Notes. Cells show 95% Confidence Intervals (CI) for random-effects model (nested by respondent ID). Coefficients with CIs that do not contain zero are in **bold**. a. Reference category is no flag (control) condition.

Table S4. Study 2 random-effects models estimating flag influence on flagging system perceptions

	Reactance		Value of	flagging
	Main effect	Interaction	Main effect	Interaction
Story, Facebook (StoryFB) ^a	139, .602	176, .630	539, .157	682, .059
Site, self-identified (SiteSID) ^a	135, .598	114, .676	622, .066	725, .005
Site, Facebook (SiteFB) ^a	170, .570	158, .637	644, .053	760,026
Inaccurate issue beliefs, t-1	_	112, .505		566,070
StoryFB X inaccurate	_	458, .430	_	004, .710
SiteSID X inaccurate	_	578, .273	_	088, .593
SiteFB X inaccurate	_	554, .312		055, .638
Constant	3.097, 3.606	3.011, 3.560	5.016, 5.495	5.109, 5.615
Variance components				
Random intercept	1.577, 2.133	1.564, 2.118	1.484, 1.974	1.481, 1.968
Residual	.579, .747	.579, .747	.353, .455	.349, .450
Number of observations	955	955	956	956
Number of participants	478	478	478	478
Likelihood ratio test	$\bar{\chi}^2(1) = 372.76$ $p < .001$	$\bar{\chi}^2(1) = 368.14$ $p < .001$	$\bar{\chi}^2(1) = 511.10$ $p < .001$	$\bar{\chi}^2(1) = 512.64$ $p < .001$


Notes. Cells show 95% Confidence Intervals (CI) for random-effects model (nested by respondent ID).

Coefficients with CIs that do not contain zero are in **bold**. a. Reference category: Story, self-identified

Table S4a. Study 2 flagging system perceptions models, without exclusions

	Reactance		Value of	flagging	
	Main effect	Interaction	Main effect	Interaction	
Story, Facebook (StoryFB) ^a	123, .552	118, .611	577, .020	625, .015	
Site, self-identified (SiteSID) ^a	143, .527	091, .631	611, .017	637,003	
Site, Facebook (SiteFB) ^a	132, .542	162, .560	651,053	714,080	
Inaccurate issue beliefs, t-1		.024, .572	_	435, .003	
StoryFB X inaccurate	_	500, .270	_	216, .399	
SiteSID X inaccurate	_	603, .141	_	252, .342	
SiteFB X inaccurate	_	377, .371	_	166, .432	
Constant	3.234, 3.714	3.112, 3.625	4.967, 5.392	5.109, 5.615	
Variance components					
Random intercept	1.738, 2.251	1.704, 2.211	1.419, 1.820	1.481, 1.968	
Residual	.562, .702	.561, .700	.346, .431	.349, .450	
Number of observations	1255	1255	1256	1256	
Number of participants	628	628	628	628	
Likelihood ratio test	$\bar{\chi}^2(1) = 538.55$	$\bar{\chi}^2(1) = 520.24$	$\bar{\chi}^2(1) = 659.23$	$\bar{\chi}^2(1) = 512.64$	
	<i>p</i> <.001	<i>p</i> <.001	p <.001	p <.001	

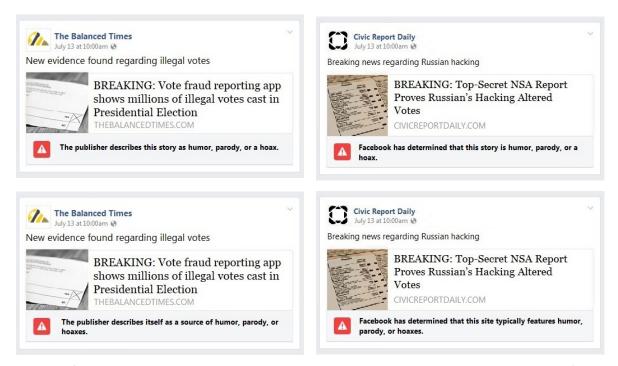
Notes. Cells show 95% Confidence Intervals (CI) for random-effects model (nested by respondent ID). Coefficients with CIs that do not contain zero are in **bold**. a. Reference category: Story, self-identified

Presidential Election

THEBALANCEDTIMES.COM

A Disputed by 3rd party fact-checking organizations

Figure S1. Study 1 visual presentation of misinformation and flags


Note. All flags, messages, and sources are shown, but there were eight combinations in all: 2 (messages:

Votes

CIVICREPORTDAILY.COM

Vote fraud in *The Balanced Times* or Russian hacking in *Civic Report Daily*) X 4 (flag type: self-identified humor flag, fact-checker flag, peer-generated flag, no flag)

Figure S2. Study 2 visual presentation of misinformation and flags

Note. All flags, messages, and sources are shown, but there were eight combinations in all: 2 (messages:

Vote fraud in *The Balanced Times* or Russian hacking in *Civic Report Daily*) X 4 (humor flag type: story self-identified flag, story Facebook flag, site self-identified flag, site Facebook flag, no flag). No flag (control) condition the same as in Study 1.